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Abstract. In bond percolation, for p just above pi. there are d u ~ t e r s  of dead-end open 
bonds that arc each blocked from joining the backbone by a single closed bond. For any 
lattice, the overage number of bonds in such  cluster^ diverges as ( p - p J ' .  We derive here 
formulae far the density of these  duster^ on any lattice, and for the sire distribution and 
the density of clusters above any given size on the Bethe tree lattice. While the size of the 
ouerage cluster diverges in magnitude ai p approaches pc,  the density of cIustc~s lcrger 
than any given finite size drops to zero at some p > p s .  In the mean-field approximation, 
far a fixed macroscopic voltage gradient, the voltage drop across the bond blocking such 
a cluster is proportional to the length of the cluster. The results presented here suggest 
that the maximum voltage drop across any blocked bond in an arbitrarily large, finite 
network does not approach infinity as p approaches p,, as previously suggested, but 
approaches zero for some p > p , .  Analogous results are obtained for site percolation. 

In the flow of current through sparse electrical networks with p, the open fraction, 
near the percolation threshold pc, large voltage drops can develop across individual 
bonds. Examples are large voltage drops across open bonds for p just above pc [I-41 
and across closed bonds for p just below pc  [1,2]. Recently [SI we addressed the 
problem of voltage drops across closed bonds for p just above p,-that is, the voltage 
drop across a single closed bond that blocks a large cluster of dead-end open bonds 
from joining the conducting backbone. More precisely, we addressed the size of the 
clusters so blocked. 

Our interest arises from the study of foams used to reduce gas flow through porous 
materials [ 6 ] .  The liquid films, or lamellae, in these foams block the Row of gas as an 
insulating bond in a network blocks the flow of electricity. The crucial step in foam 
generation is the mobilization of these lamellae, which depends on the pressure drops 
across them exceeding the capillary resistance to their displacement. If there are too 
few lamellae to completely block gas flow, then the largest pressure drops occur across 
individual lamellae that block gas flow through long clusters of pores connected to 
the conducting backbone of gas-filled pores. 

As a first, and rough, 'mean-field' approximation, we reasoned that this pressure 
drop across the lamella is proportional to the product of the size of the blocked cluster 
and the macroscopic pressure gradient Vp. We then derived a formula for the average 
number of bonds in such clusters, A [5], and reasoned that the lamellae first mobilized 
were those which blocked clusters of some constant factor (e.g. 3) times the mean size. 
This led to an approximate formula for the macroscopic pressure gradient required to 
mobilize lamellae and generate foam. The average cluster size A approaches infinity 
as the fraction of bonds through which gas flows approaches the percolation threshold 
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[ 5 ] ;  this suggests that the macroscopic pressure gradient required to mobilize the 
corresponding lamellae approaches zero. 

In this paper, we derive new formulae for the number and distribution of sizes of 
these clusters, and revise our earlier conclusions. In the mean-field approximation, the 
pressure gradient required to mobilize lamellae does not approach zero as the percola- 
tion threshold is approached; ironically, it approaches infinity instead. 

Our derivation focuses on bond percolation, but analogous arguments can be made 

bonds that, if opened, would immediately join the backbone; we name these 'b* bonds.' 
Examples are shown in figure 1. Each such bond blocks a 'dendritic,' 'tag end' or 
'dead-end' cluster of open bonds that would join the backbone if the closed bond were 
opened; we call this cluster a 'b* cluster' and define n to be the number of bonds in 
the cluster. (If only the b* bond itself would join the backbone if it were opened, 
n = 1 . )  A given dead-end open bond could belong to more than one b* cluster, 
depending on the blocked paths by which it could rejoin the backbone, but a b* bond 
defines exactly one b* cluster. 

for site perco!a!iofi. For p near above the perco!ation !hreshn!d_ ,DCi there are c!osed 

(a )  (L-) 
Figure 1. b* Bonds on a square lattice. ( a )  bond percolation. 143 bonds out of 242 are 
occupied: backbone (-) 111 bonds; dendritic (. . . .) 31 bands; isolated (-) I bond. 
99 bands are unoccupied, of which 73 are b* bonds (*). ( b )  Sile percolation. 469 out of 

(4-) 8 sites. 156 sites are unoccupied, of which 146 are b* sites (*). 
6 i j  si[rs arr ucrupie& 'ua&'uorrc ( 4 - j  4;; sitcs; &ndii;ii ( . . .) ;c jitij; isola[zd 

We define pb( n, p )  to be the fraction of all bonds on the lattice that are b* bonds 
blocking clusters of size n ;  in other words, pb(n, p) is the density of clusters of size n 
on the lattice. The average cluster size ti is then 

For any lattice [ 5 ]  
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where B is the backbone fraction; near the percolation threshold ii scales as 

lim A = p c y e ( p - p c ) - '  (3) 
o-P< 

where y s  is the exponent for the scaling of the backbone fraction near pc [5]. 

words, the density of b* bonds on the lattice: 
Let pbt be the fraction of all bonds on the network that are b* bonds, or, in other 

m 

One can derive a formula for pbr as follows. Suppose the bonds in a lattice were being 
opened in a random sequence. The probability that the previously opened bond was 
a b* bond is B i p ,  because ( a )  the previously opened bond is now on the backbone 

"ULlU "C'ULS ,I W d S  up'C,,c'u, ",U (U, arty "1 L'1S U p G r r  

bonds could have been the last opened with equal probability. Since these quantities 
d o  not change significantly upon opening a single bond on a large lattice, B i p  is also 
the probability that the next bond opened will be a b* bond; i.e., it is the probability 
that the next bond chosen at random from the closed fraction (1 - p )  is a b* bond. 
Therefore the total fraction pb, of all bonds on the network that are b* bonds is 

i fa i i<  oii:y if?, *,ad bzeii a :*&--A l.-C--" :. ... ̂ ^  ^_^_^.I 
^ _ _ I  ,L \  ...-.l.- ^^^_ 

Pa, = ( 1  - P ) B i P .  ( 5 )  

Equation ( 5 )  is valid for bond or site percolation on any lattice. Note that although 
the average b* cluster, averaged over all b* bonds, diverges in size as p approaches 
p c  according to (3),  the density of b* bonds on the network approaches zero as p 
approaches p c ,  as governed by ( 5 ) .  Figure 2 shows pb, for a Bethe tree lattice [7 ,8 ]  of 

or 0.25 for Z = 5.  Thus, as figure 2 shows, there are no  b* bonds for p < p c  = 0.25 
(because there is no backbone). 

For the Bethe tree lattice, one can derive a formula for pb(n, p ) ,  as follows. This 
derivation is summarized schematically in figure 3. The bond of interest is the one 

-̂--A:.."*: I.-* 7--c 12- . .* t -"r ,n*l . -&-~~ * ~ ~ _ ~ - - ~ , " . : - _ . ~ - " - ~ - , A "  - 3  1 1 7  1, 
bUUI"III'l ,IULI LIULIIVGI fi - 2. I", L11G Y G L I I C  U G C ,  L11G p ' c L b " L " " u "  L l l l C D l l U l "  yc-  L, ,A - 1,. 

P 

Figure 2. Density of b* bonds on Bethe tree lattice, Z = 5 
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At least 2 Closed 1 bond open At least 2 
bonds on along blocked bonds on 
infinite cluster; other infinite 
dUStPTS bonds not on dusters 

infinite c l~s ters  

Figure 3. Derivation of ob( n, p ) .  

second from the left in the figure. The probability that this bond is a b* bond is the 
product of five factors. 

( a )  The bond itself must be closed: probability ( 1 - p ) .  

( b )  We assume first that the b* bond is the leftmost bond of the b* cluster. 
Therefore, the blocked bond must touch the backbone on its left. In other words, of 
the ( Z - 1 )  bonds to the left, at least two of them must be part of an infinite cluster 
extending away from the blocked bond. The factor R defined for the Bethe tree by 
Stinchcomhe [7] is the probability that a given bond is not part of such a cluster. It 
is the root of the equation [SI 

that goes to zero as p approaches 1.  The probability that the backbone touches the 
left end of the bond of interest is one minus the probability that none of the ( Z  - 1)  
bonds are part of an infinite cluster extending to the left, minus the probability that 
exactly one of the bonds is part of such a cluster: 

[ I  - R ' z - l ) -  ( 1  - R ) R ' Z - Z ' ( Z -  l)]. 

( c )  The next bond in the b* cluster must be open, and none of the other ( Z  - 2)  
bonds may belong to infinite clisters extending away from the b* cluster. (Otherwise 
the backbone would pass through this point.) The b* cluster could extend through 
any of the ( Z  - 1) bonds of this group with equal probability. This event must continue 
through the ( n  - 1) open bonds of the b* cluster: 

[ pR'Z-2' ( Z -  1 ) ] ' " - " ,  

( d )  At the right of the b* cluster, the situation is the same as at the left end ( b ) :  
at least two of the ( Z - 1 )  bonds must he part of infinite open clusters that do not 
include the b* cluster: 

[ I  - R ( ~ - ~ ' - ( I  - R ) R ' ~ - ~ ) ( z -  1 ) i  
( e )  Initially at ( b )  we assumed that the closed bond was the leftmost of the b* 

cluster. It could be any of the n bonds in the cluster with equal probability; therefore 
the overall probability is n times that computed with the other four factors. 

The final result is 

pb(n, p )  = n ( 1  - p ) [ l -  R " - ' ) - ( l -  R ) R ' Z - 2 ' ( Z -  1 ) ] 2 [ p R " - 2 ' ( Z - l ) ] ' n - ' ) .  (7) 
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For fixed p, pb(n, p )  has the form 

fb(n,p) nul(p)u2(p)'"-'). (8) 

Similar arguments lead to the corresponding formula for site percolation: 

p.( n, p )  = n (  1 - p ) [  1 - R'""'- (1-R)(z-21 (Z-l)]2p[pR'Z-2'(Z-l)]" (9) 

which follows scaling similar to (8). The factor R ( p )  is the same for site or bond 
percolation [7,8]. 

Figure 4 shows pb( n, p )  for a Bethe tree with Z = 5 for several values of p. From 
(2), the values of E are 49.9, 16.6, 9.9, 4.9 and 3.2 for p=0.26, 0.28, 0.3, 0.35 and 0.4. 
The values obtained by direct summation using (7)  for n up to 300 agree with these 
values; slightly different values are obtained from the asymptotic formula (3). The 
values of pbt obtained from either summing (7) over n or from (5) are 0.007452, 
0.051 87, 0.1129, 0.2599 and 0.3571 for the same values of p. 

0.08 

- 0.06 
% 
E 
v 

L) 0.04 

0.02 

0.00 

a 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
n 

Figure 4. Density of blacked clusten on Bethe tree lattice, Z = 5. 

Using (7)  or (9) one can estimate the fraction of bonds that are b* bonds blocking 
clusters above some certain threshold size; or equivalently, the size such that a given 
fraction of bonds are b* bonds that block clusters of that size or greater. Let n b ( ~ b ,  p) 
be the size such that a fraction E~ of the bonds in the network are b* bonds blocking 
clusters of size nb or greater. In other words, n b ( E b , p )  satisfies the equation 

Substituting an integral for a summation in (IO) is valid for the large values of n' 
involved. Using (8), (10) becomes 

ul[u$-"/(1n u ~ ) ~ ] [ I  -(In u2)nb]= ( 1 1 )  

with 

U, ( 1  -p)[l -R ( 2 - 1 1 -  ( 1  - R ) R ' ~ - ~ ' ( Z -  1)]* 

U , = ~ R ' ~ - ' ' ( Z  - 1) .  
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For site percolation, the corresponding formula is 

u,[u;D/(ln U ~ ) ~ ] [ I - ( I ~  u , ) n h ] = ~ ,  

with 
( Z - 1 ) I 2  u l - p ( l - p ) [ l - R  IZ-11- ( 1  - R )  (Z-21 

u ~ - ~ R ( ~ - ~ ) ( Z -  1). 

Figure 5 shows nh(Eb, p )  for several values of E~ for the Bethe tree with Z = 5 .  Also 
shown is A and 3 %  Far from the percolation threshold, a given multiple of f i  is 
approximately equivalent to nh(Eb,p)  for some fixed value of E ~ .  The value 3A, which 
we used in a mean-field model for pressure drops across liquid films in porous media 
[ 6 ] ,  corresponds to a fraction of between 0.001 and 0.01 of the bonds on the lattice. 
In other words, roughly 1 bond in 300 is a b* bond blocking a cluster of size equal 
to or greater than 317, over a range of values of v far from the percolation threshold. 
Sufficiently near the percolation threshold, however, n h ( e h . p )  is zero for any finite 
value of eb, because the fraction of all b* bonds approaches zero at the percolation 
threshold ( 5 ) .  In other words, any finite multiple of A overestimates nh(Eb,p) for any 
fixed values of near the percolation threshold. In our mean-field model for Row in 
porous media, this implies that the number of lamellae in a network of finite size that 
can be mobilized at any finite pressure gradient approaches zero a s p  + p.; the average 
cluster size approaches infinity, but the number of clusters approaches zero. Hence 
the minimum macroscopic pressure gradient for foam generation approaches infinity, 
not zero, as p + p E .  

\ I  
1 

11 
0.0001 0.001 0.01 0.1 

(P-P,) 
Figure 5. Cluster size near percolation threshold: Bethe tree; Z = S  

Near the percolation threshold, true potential (voltage or pressure) drops would 
deviate from the mean-field model due to the inhomogeneity of the current distribution 
[I-41, but no general, quantitative model for potential drops across blocked bonds 
under these conditions is yet available. 
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